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Abstract 
Capsule Networks are a new kind of neural network         
architecture that are supposed to solve some of the         
shortcomings of Convolutional Neural Networks     
(CNN). One of these shortcomings is rotation       
invariance. CNN architectures generally do not      
perform well with different orientations unless the       
network was trained on data that included such        
rotations. For 3D models, rotation invariance is       
arguably the most common kind of transformation.       
Capsule Nets, if able to achieve this, could be a great           
tool for content based 3D model retrieval. This        
investigation establishes the current performance of      
Capsule Nets optimized for 3D models by       
comparison to the ModelNet benchmark hosted by       
Princeton. 

 

1 Background 
Information retrieval, in practice, centers around the       
idea of creating an index or semantic space through         
which things can be compared. This can be sentences,         
images, 3D models, and DNA sequences. Through the        
use of recommendation engines and search engines we        
take hold of this value almost every day.  
 
The value information retrieval adds is in       
recommending relevant documents of which there are       
too many for the average human to parse through.  
 
As access to CAD tools and things like 3D printers          
increases, content based 3D model retrieval will have        
great value. Less experienced designers can expose       

themselves to relevant design patterns of people many        
years their senior much like how a programmer will         
trall Stack Overflow for better design patterns or        
solutions to a problem.  
 
Research in Content based 3D model retrieval is a few          
decades old. Old methods of content-based 3D model        
retrieval tend to use more manually engineered       
features: transforms that focus on frequency of surface        
change[3], steps required to assemble [2] (from the        
world of machining). Most newer methods are using        
some combination of CNNs. [4, 1]  
 
Recently, (~2015) a benchmark was established and       
hosted by Princeton called ModelNet. [1] It consists of         
two datasets of labeled 3D models. ModelNet10 is a         
10 class labeled dataset. ModelNet40 is a 40 class         
labeled dataset. 

Neural Networks for Information Retrieval 

Most of us are familiar with neural networks telling us          
if something is a kitten or a hotdog, but both          
supervised and unsupervised neural networks have      
also been used for information retrieval. The use        
differs slightly. The problem is no longer “is this a          
kitten.” Instead, you have a query, and the query is          
“what is most similar to this kitten?” 
 
Doing this with a neural network requires a slight         
modification. 
 



 
 
For the supervised model, you can keep all of the          
layers of the network except the very last layer where          
you output probabilities for classification. It’s like       
slicing the part of the network that contains the most          
distilled representation for that image (a 1D vector).        
Basically you can think of this network as a         
transformer that moves an image (or model, or text)         
into a ‘latent feature space’. You can cut from the          
input layer to any layer in the network and achieve          
different kinds of feature spaces. I’ll use every layer         
except the last (the softmax probabilities vector) for        
this paper. 

2 Problem 
CNNs aren’t completely translation invariant, and      
aren’t rotation invariant.[5] The current best performer       
on ModelNet[1] called PANORAMA-ENN uses an      
ensemble of CNNs that have been trained on aligned         
models and data augmented via labeled rotations.  
 
 

 
 
In practical terms, if you want a CNN to be able to            
understand that there’s an upside down helicopter in a         
picture then that network would need to be trained on          

data containing upside down helicopters. That’s what       
PANORAMA-ENN did for many angles of models on        
ModelNet10 and ModelNet40. 
 
Augmenting data is common in deep learning.       
However, for information retrieval, you’re already      
trying to index a lot of data. So there’s good reason to            
avoid the use of augmented data for information        
retrieval. 
 
Capsule Nets allegedly solve the rotation / translation        
issue via ‘dynamic routing by agreement’. [8]  
 
This paper will investigate performance of 3D       
convolutional Capsule Nets. I will be using some code         
implemented by Xifeng Guo [7] which was       
implemented for MNIST. The biggest difference is in        
applying this to 3D voxel data instead of 2D images. 
 
The ModelNet benchmark contains a 10 class and 40         
class dataset. Accuracy is used to measure       
classification performance. Mean Average Precision is      
used to measure information retrieval performance. 

3 Analysis 

3.1 Data 
 
Samples ModelNet10 ModelNet40 
 Train 3991 9832 
 Test 908 2468 
 Validation 10% of Train 10% of Train 
Classes 10 40 
Dimension 30x30x30 30x30x30 
Aligned Yes No 
 
Each sample is a file in *.off format that represents          
coordinates of a polygonal object. I’ve transformed       
these files from *.off format to *.binvox format (a 3D          
tensor).  
 



 
(see appendix: Data Preprocessing) 

3.2 Class Imbalance 
There is class imbalance to account for.  

 

 
 
To handle the class imbalance the validation set is 
created via stratified shuffle sample from the training 

data. Shuffled is at random while stratified creates the 
same representation of classes found in training set in 
the validation set. 
 
Each class in the training set is upsampled to a number 
of samples equal to whatever the highest sample count 
class is. To see verification plots please see the 
appendix. 
(see appendix: ‘Class Balance’) 

3.3 CNNs Rotational Variance 
To illustrate the problem that CNNs have with        
rotational variance I trained a CNN similar to what         
was created in “3D ShapeNets: A Deep Representation        
for Volumetric Shapes.” [10] 
 
In the picture on the left is a chair how it is normally             
aligned in the ModelNet10 test set (which is aligned).         
The confidence is ~100% that this is a chair while the           
confidence for the chair on the right is 72% 
 

 
(see appendix: CNN Rotation) 
 
If rotational invariance exists, then the confidences       
should be essentially the same. They are not. 

  



3.4 Capsule Nets 
The implementation of Capsule Nets for 3D voxel data         
was based on CapsNet-Keras [7], a Capsule Net        
implementation designed for the MNIST digits      
classification benchmark and others. (see     
3d_model_retriever/modelnet40_arch.py and  
3d_model_retriever/modelnet10_arch.py) 
 
The first Conv2D layer and the Conv2D layer inside of          
only convolutional capsule layer are changed to       
Conv3D layers. 

 
(2D Convolutional Layer) 

 
(3D Convolutional Layer) 

 
The main difference between Capsule Nets and CNNs        
is in the way outputs are passed from one layer to the            
next. In a convolutional layer all information is passed         
forward. If you use max pooling in a CNN layer then           
only those neurons which are maximally activated pass        
their outputs forward. For Capsule Nets, each       
capsule’s output is conditioned on the idea of ‘routing         
by agreement’. In practice this means that the capsule         
is only passing outputs forward for entities in the         
image for which it’s certain actually exist regardless of         
pose/orientation. 

 
Due to time constraints, evaluating other ‘multiple       
convolutional capsule layers’ architectures will require      
future work to implement. (see appendix:      
Complications) 

  



 
!vlz¥n¨mw >zdfv?f¨ăÿ 

*vY¦¦nknbY¨nzx 

ã!bb©¥Yb±ä 

>zdfv?f¨ăÿ 

Kf¨¥nf®Yv 

ã>!Hä 

>zdfv?f¨Āÿ 

*vY¦¦nknbY¨nzx 

ã!bb©¥Yb±ä 

>zdfv?f¨Āÿ 

Kf¨¥nf®Yv 

ã>!Hä 

>nx¨z f¨ YvÎåĂĂæ ćĈÎĂĘ  ĈĂÎąĘ  

Kz¨Y¨nzx?f¨åĂāæ ĈĆÎĂĆĘ  ĈćÎăąĘ  

=zxbmY?f¨åĂĀæ   ĈăÎĂĆ  

!bmvnz¢¨Y¦ f¨ YvÎ åĂÿæ ćăÎĄĘ  ĈĄÎăĘ  

H!?AK!>!Ý.?? åāĈæ ĈĄÎĄąĘ ćąÎĂăĘ ĈąÎćĄĘ ĈĂÎāćĘ 

(As a frame of reference see appendix: Benchmark) 

3.5 Benchmark 

“Out of the box” Capsule Networks: 

ModelNet10 ModelNet40 
Accuracy 9% ***Similar or worse, 

saving model training 
time.  Rotated 90 9% 

MAP 19% 
 Rotated 90 19% 

Accuracy 

Classification accuracy, a straight-forward metric,     
shouldn’t require any further explanation. 

Mean Average Precision (MAP) 

The information retrieval portion of the benchmark       
is assessed with MAP - Mean Average Precision.        
The motivation for this metric is based on the         
difference in the objective for information retrieval.       
Information retrieval having to do with accurately       
ranking results for a query. 

4 Methodology 

4.1 Data Preprocessing 
Each sample is its own file in *.off format. These          
files consist of a set of coordinates and indices for          
those coordinates which describe a polygon. In order        
to be useful for performing 3D convolutions upon,        
the polygons must be converted to voxels.  

 
(see appendix: Data Preprocessing) 

4.2 Implementation 
The Capsule Net architecture in Capsnet-Keras is       
tuned for digits. Our challenge is to find the optimal          
parameters for 3D data in ModelNet instead of that         
found in MNIST digits.  

Calculating Mean Average Precision 

 
In classification the goal is to be correct. But, in          
information retrieval, the goal is to have ranked all         
of the relevant documents to a given query correctly.         
This is where the motivation of Mean Average        
Precision comes from. Results earlier in the rank        
carry more weight in the MAP score than later ones. 
 
Mean Average Precision is simply the mean of the         
aggregated average precision calculated for each      
query. Each sample is used as a query, 100%         
precision would mean that all samples of the same         
class were retrieved and ranked at the top of the          



result with higher ranks carrying more weight than        
lower ones. 
 
Example: 
If there are 2 chairs (relevant items) to a chair query           
and you rank all of them in ranks: 
(chair1, chair2, …, not_chair),  
then your average precision for this chair query and         
resultant ranked list will be 100%.  
 
If instead you ranked the chairs as:  
(not_chair, chair1, chair2, …, not_chair) 
All chairs being in rank 2 and 3. 
Then your average precision for this chair and        
resulting ranked list would be: 
58.3% 
(see code: `3d_model_retriever/utils.py:39`)  
 
From the example, the Mean Average Precision       
would be the mean of all the results of average          
precision for each query. (for each sample there is a          
query).  

Implementing Conv3D 

There are two layers where I’m changing `Conv2D`        
to `Conv3D`. The first change is within the regular         
convolutional layer (located in each ‘modelnet arch’       
file). The second change is the convolutional layers        
within the capsule layer itself.  
 

● `3d_model_retriever/capsulelayers.py:178` 
● `modelnet10_arch.py:72` 

`modelnet40_arch.py:70` 

Metrics 

One interesting part of the project was the need to          
process metrics after model creation. In a sort of         
‘eager’ fashion, the metrics and plots are created        
whether or not I will actually use them. After each          
model is created, a ‘process results’ function is        
called to calculate all the metrics ahead of time         
leaving less processing come time for analysis.  

- Precision recall curves, confusion matrices,     
and precision recall auc are all used to        

evaluate the discriminative power of the      
network 

- Latent space matrix for info retrieval metric       
Mean Average Precision 

- Save y_prediction for ad-hoc analysis if      
necessary 

Complications 

Exploring different Capsule Net specific     
architectures will have to be a future endeavor.        
Capsule Nets are pretty convoluted. No pun       
intended. Due to time constraints, my understanding       
is somewhat limited in how to implement more        
robust architects in Keras. This paper will focus        
solely on optimizing the existing Capsule Net       
architecture for 3D models with a grid search.  
 
Issues with checkpointing and saving pickled models       
wasted a little over 12 hours of development time.         
Checkpointing in keras is non-trivial when training       
across multiple GPUs. Saving pickled models with       
custom layers required some adjustments to      
Capsnet-Keras code. [7]  
See 3d_model_retriever/capsulelayers.py:99 

Robustness 

For the sake of training time, I used single hold out           
validation. Finally, upon choosing a model, I       
perform a 5-fold stratified shuffled cross validation       
validate our model accuracies and mean average       
precision scores. 

4.3 Refinement 

Capsnets out of the box performance 

I stopped this model early on since the validation         
accuracy never went above 10% during training.  

Capsnet ModelNet10 Grid Search 

After tuning Capsule Nets on ModelNet10 with       
hunches I used a grid search to get to an optimal set            
of hyper parameters. With more time (and money)        
there is undoubtedly a more optimal solution.  
(see appendix: Grid Search ModelNet10) 



Capsnet ModelNet40 

A similar process was applied to ModelNet40.       
However, given the constraints of having to use the         
same model on ModelNet40 and ModelNet10, it was        
faster to perform design iterations on ModelNet10       
data and then try to get that model to run on           
ModelNet40. Minimal grid search was done on       
ModelNet40. Further search is certainly warranted,      
especially after accidentally discovering how helpful      
random restart was for ModelNet40.  
 
After seeing the positive effect of random restarts in         
avoiding local minima, I started every model       
training of ModelNet40 with random restarts on a        
small batch of 500 samples when training accuracy        
doesn’t go above a threshold of .4. Once warmed up          
the network switches over to a batch size of 128/256          
for 50 Epochs or early stop with decreasing learning         
rate.  
(see appendix: Grid Search ModelNet40) 

5 Results 

5.1 Evaluation / Validation 

Performance 

ModelNet10 ModelNet40 
score 2*stderr score 2*stderr 

Accuracy 93.08% 1.18% 82.73% 2.12% 
 Rotated 90 31.31% 1.68% 41.09% 4.27% 
MAP 88.44% 4.15% 70.10% 2.22% 
 Rotated 90 35.10% 3.75% 30.49% 2.24% 

Scrutinizing Discriminative Properties 

From the precision recall plots and the confusion        
matrix the least performant class “night stand” gets        
mixed up with “dresser” pretty frequently (20% of        
the time). Comparing dimensional    
perturbations(next page) for a true positive “night       
stand” with low confidence and a false negative        
“night stand” the dimensional perturbations should      
be similar(next page). 

 

 

 
If there is discriminative power then the dimensional        
perturbations will not all be the same. 
If there is low discriminative power, then more of         
the dimensional perturbations will be the same. 
 



     Low Discriminative Power 
 

 
True Pos False Neg 

  
      1           2            3            1            2            3  

 
(for full size see appendix: Dresser vs Nightstand) 
 
Conversely, when there is high discriminative power       
we should see dimensional perturbations that are       
more obviously different between the two objects.       
(when the model is right and it was confident) 
 
Column 2 is simply the activation map for that         
class. You’ll notice these are exactly the same for         
the Low Discriminative Power. Notice for the High        
Discriminative Power, you’ll see that they’re      
different.  
 
 

     High Discriminative Power 

 
True Positive           True Negative 

        (dresser positive) 
     1            2            3            1           2            3  

 
(for full size see appendix: Night Stand True Positive         
and True Negative…) 
 

Columns 1 and 3 describe how the activations        
change along that capsule dimension. Between the       
classes you’ll notice that these are significantly       
different from one another.   



Rotational Invariance Not Achieved 

ModelNet10 PR AUC 

ModelNet10 PR AUC Rotated 

 
 
These two pairs of charts show that we clearly did          
not achieve rotation invariance for ModelNet10.  
 
Perhaps more easily seen with a plot of the         
distributions of average precisions.  

Not Rotated    Rotated 

 
 

ModelNet40 PR AUC 
For ModelNet40 Rotational Invariance will be more       
easily seen by looking at differences in confusion        
matrices 

Not Rotated 

 

Rotated 

 
 
 
For rotated data, there are quite a few dark colored          
squares along the diagonal, signifying successful      
classification in spite of rotation. Taking a closer        
look at the top ten performing classes PR AUC         
curves below 
 




