
Investigation: Capsule Nets for Content-Based
3D Model Retrieval

Ryan Lambert
ryan.g.lambert@gmail.com

Abstract
Capsule Networks are a new kind of neural network
architecture that are supposed to solve some of the
shortcomings of Convolutional Neural Networks
(CNN). One of these shortcomings is rotation
invariance. CNN architectures generally do not
perform well with different orientations unless the
network was trained on data that included such
rotations. For 3D models, rotation invariance is
arguably the most common kind of transformation.
Capsule Nets, if able to achieve this, could be a great
tool for content based 3D model retrieval. This
investigation establishes the current performance of
Capsule Nets optimized for 3D models by
comparison to the ModelNet benchmark hosted by
Princeton.

1 Background
Information retrieval, in practice, centers around the
idea of creating an index or semantic space through
which things can be compared. This can be sentences,
images, 3D models, and DNA sequences. Through the
use of recommendation engines and search engines we
take hold of this value almost every day.

The value information retrieval adds is in
recommending relevant documents of which there are
too many for the average human to parse through.

As access to CAD tools and things like 3D printers
increases, content based 3D model retrieval will have
great value. Less experienced designers can expose

themselves to relevant design patterns of people many
years their senior much like how a programmer will
trall Stack Overflow for better design patterns or
solutions to a problem.

Research in Content based 3D model retrieval is a few
decades old. Old methods of content-based 3D model
retrieval tend to use more manually engineered
features: transforms that focus on frequency of surface
change[​3​], steps required to assemble [​2​] (from the
world of machining). Most newer methods are using
some combination of CNNs. [​4​, ​1​]

Recently, (~2015) a benchmark was established and
hosted by Princeton called ModelNet. [​1​] It consists of
two datasets of labeled 3D models. ModelNet10 is a
10 class labeled dataset. ModelNet40 is a 40 class
labeled dataset.

Neural Networks for Information Retrieval

Most of us are familiar with neural networks telling us
if something is a kitten or a hotdog, but both
supervised and unsupervised neural networks have
also been used for information retrieval. The use
differs slightly. The problem is no longer “is this a
kitten.” Instead, you have a query, and the query is
“what is most similar to this kitten?”

Doing this with a neural network requires a slight
modification.

For the supervised model, you can keep all of the
layers of the network except the very last layer where
you output probabilities for classification. It’s like
slicing the part of the network that contains the most
distilled representation for that image (a 1D vector).
Basically you can think of this network as a
transformer that moves an image (or model, or text)
into a ‘latent feature space’. You can cut from the
input layer to any layer in the network and achieve
different kinds of feature spaces. I’ll use every layer
except the last (the softmax probabilities vector) for
this paper.

2 Problem
CNNs aren’t completely translation invariant, and
aren’t rotation invariant.[​5​] The current best performer
on ModelNet[​1​] called PANORAMA-ENN uses an
ensemble of CNNs that have been trained on aligned
models and data augmented via labeled rotations.

In practical terms, if you want a CNN to be able to
understand that there’s an upside down helicopter in a
picture then that network would need to be trained on

data containing upside down helicopters. That’s what
PANORAMA-ENN did for many angles of models on
ModelNet10 and ModelNet40.

Augmenting data is common in deep learning.
However, for information retrieval, you’re already
trying to index a lot of data. So there’s good reason to
avoid the use of augmented data for information
retrieval.

Capsule Nets allegedly solve the rotation / translation
issue via ‘dynamic routing by agreement’. [​8​]

This paper will investigate performance of 3D
convolutional Capsule Nets. I will be using some code
implemented by Xifeng Guo [​7​] which was
implemented for MNIST. The biggest difference is in
applying this to 3D voxel data instead of 2D images.

The ModelNet benchmark contains a 10 class and 40
class dataset. Accuracy is used to measure
classification performance. Mean Average Precision is
used to measure information retrieval performance.

3 Analysis

3.1 Data

Samples ModelNet10 ModelNet40
 Train 3991 9832
 Test 908 2468
 Validation 10% of Train 10% of Train
Classes 10 40
Dimension 30x30x30 30x30x30
Aligned Yes No

Each sample is a file in *.off format that represents
coordinates of a polygonal object. I’ve transformed
these files from *.off format to *.binvox format (a 3D
tensor).

(see appendix: ​Data Preprocessing​)

3.2 Class Imbalance
There is class imbalance to account for.

To handle the class imbalance the validation set is
created via stratified shuffle sample from the training

data. Shuffled is at random while stratified creates the
same representation of classes found in training set in
the validation set.

Each class in the training set is upsampled to a number
of samples equal to whatever the highest sample count
class is. To see verification plots please see the
appendix.
(see appendix: ‘Class Balance’)

3.3 CNNs Rotational Variance
To illustrate the problem that CNNs have with
rotational variance I trained a CNN similar to what
was created in “3D ShapeNets: A Deep Representation
for Volumetric Shapes.” [​10​]

In the picture on the left is a chair how it is normally
aligned in the ModelNet10 test set (which is aligned).
The confidence is ~100% that this is a chair while the
confidence for the chair on the right is 72%

(see appendix: CNN Rotation)

If rotational invariance exists, then the confidences
should be essentially the same. They are not.

3.4 Capsule Nets
The implementation of Capsule Nets for 3D voxel data
was based on CapsNet-Keras [​7​], a Capsule Net
implementation designed for the MNIST digits
classification benchmark and others. ​(see
3d_model_retriever/modelnet40_arch.py and
3d_model_retriever/modelnet10_arch.py)

The first Conv2D layer and the Conv2D layer inside of
only convolutional capsule layer are changed to
Conv3D layers.

(2D Convolutional Layer)

(3D Convolutional Layer)

The main difference between Capsule Nets and CNNs
is in the way outputs are passed from one layer to the
next. In a convolutional layer all information is passed
forward. If you use max pooling in a CNN layer then
only those neurons which are maximally activated pass
their outputs forward. For Capsule Nets, each
capsule’s output is conditioned on the idea of ‘routing
by agreement’. In practice this means that the capsule
is only passing outputs forward for entities in the
image for which it’s certain actually exist regardless of
pose/orientation.

Due to time constraints, evaluating other ‘multiple
convolutional capsule layers’ architectures will require
future work to implement. ​(see appendix:
Complications​)

!vlz¥n¨mw >zdfv?f¨ăÿ

*vY¦¦nknbY¨nzx

ã!bb©¥Yb±ä

>zdfv?f¨ăÿ

Kf¨¥nf®Yv

ã>!Hä

>zdfv?f¨Āÿ

*vY¦¦nknbY¨nzx

ã!bb©¥Yb±ä

>zdfv?f¨Āÿ

Kf¨¥nf®Yv

ã>!Hä

>nx¨z f¨ YvÎåĂĂæ ćĈÎĂĘ ĈĂÎąĘ

Kz¨Y¨nzx?f¨åĂāæ ĈĆÎĂĆĘ ĈćÎăąĘ

=zxbmY?f¨åĂĀæ ĈăÎĂĆ

!bmvnz¢¨Y¦ f¨ YvÎ åĂÿæ ćăÎĄĘ ĈĄÎăĘ

H!?AK!>!Ý.?? åāĈæ ĈĄÎĄąĘ ćąÎĂăĘ ĈąÎćĄĘ ĈĂÎāćĘ

(As a frame of reference see appendix: ​Benchmark​)

3.5 Benchmark

“Out of the box” Capsule Networks:

ModelNet10 ModelNet40
Accuracy 9% ***Similar or worse,

saving model training
time. Rotated 90 9%

MAP 19%
 Rotated 90 19%

Accuracy

Classification accuracy, a straight-forward metric,
shouldn’t require any further explanation.

Mean Average Precision (MAP)

The information retrieval portion of the benchmark
is assessed with MAP - Mean Average Precision.
The motivation for this metric is based on the
difference in the objective for information retrieval.
Information retrieval having to do with accurately
ranking results for a query.

4 Methodology

4.1 Data Preprocessing
Each sample is its own file in *.off format. These
files consist of a set of coordinates and indices for
those coordinates which describe a polygon. In order
to be useful for performing 3D convolutions upon,
the polygons must be converted to voxels.

(see appendix: ​Data Preprocessing​)

4.2 Implementation
The Capsule Net architecture in Capsnet-Keras is
tuned for digits. Our challenge is to find the optimal
parameters for 3D data in ModelNet instead of that
found in MNIST digits.

Calculating Mean Average Precision

In classification the goal is to be correct. But, in
information retrieval, the goal is to have ranked all
of the relevant documents to a given query correctly.
This is where the motivation of Mean Average
Precision comes from. Results earlier in the rank
carry more weight in the MAP score than later ones.

Mean Average Precision is simply the mean of the
aggregated average precision calculated for each
query. Each sample is used as a query, 100%
precision would mean that all samples of the same
class were retrieved and ranked at the top of the

result with higher ranks carrying more weight than
lower ones.

Example:
If there are 2 chairs (relevant items) to a chair query
and you rank all of them in ranks:
(chair​1​, chair​2​, …, not_chair),
then your average precision for this chair query and
resultant ranked list will be ​100%.

If instead you ranked the chairs as:
(not_chair, chair​1​, chair​2​, …, not_chair)
All chairs being in rank 2 and 3.
Then your average precision for this chair and
resulting ranked list would be:
58.3%
(see code: `3d_model_retriever/utils.py:39`)

From the example, the Mean Average Precision
would be the mean of all the results of average
precision for each query. (for each sample there is a
query).

Implementing Conv3D

There are two layers where I’m changing `Conv2D`
to `Conv3D`. The first change is within the regular
convolutional layer (located in each ‘modelnet arch’
file). The second change is the convolutional layers
within the capsule layer itself.

● `3d_model_retriever/capsulelayers.py:178`
● `modelnet10_arch.py:72`

`modelnet40_arch.py:70`

Metrics

One interesting part of the project was the need to
process metrics after model creation. In a sort of
‘eager’ fashion, the metrics and plots are created
whether or not I will actually use them. After each
model is created, a ‘process results’ function is
called to calculate all the metrics ahead of time
leaving less processing come time for analysis.

- Precision recall curves, confusion matrices,
and precision recall auc are all used to

evaluate the discriminative power of the
network

- Latent space matrix for info retrieval metric
Mean Average Precision

- Save y_prediction for ad-hoc analysis if
necessary

Complications

Exploring different Capsule Net specific
architectures will have to be a future endeavor.
Capsule Nets are pretty convoluted. No pun
intended. Due to time constraints, my understanding
is somewhat limited in how to implement more
robust architects in Keras. This paper will focus
solely on optimizing the existing Capsule Net
architecture for 3D models with a grid search.

Issues with checkpointing and saving pickled models
wasted a little over 12 hours of development time.
Checkpointing in keras is non-trivial when training
across multiple GPUs. Saving pickled models with
custom layers required some adjustments to
Capsnet-Keras code. [​7​]
See 3d_model_retriever/capsulelayers.py:99

Robustness

For the sake of training time, I used single hold out
validation. Finally, upon choosing a model, I
perform a 5-fold stratified shuffled cross validation
validate our model accuracies and mean average
precision scores.

4.3 Refinement

Capsnets out of the box performance

I stopped this model early on since the validation
accuracy never went above 10% during training.

Capsnet ModelNet10 Grid Search

After tuning Capsule Nets on ModelNet10 with
hunches I used a grid search to get to an optimal set
of hyper parameters. With more time (and money)
there is undoubtedly a more optimal solution.
(see appendix: ​Grid Search ModelNet10​)

Capsnet ModelNet40

A similar process was applied to ModelNet40.
However, given the constraints of having to use the
same model on ModelNet40 and ModelNet10, it was
faster to perform design iterations on ModelNet10
data and then try to get that model to run on
ModelNet40. Minimal grid search was done on
ModelNet40. Further search is certainly warranted,
especially after accidentally discovering how helpful
random restart was for ModelNet40.

After seeing the positive effect of random restarts in
avoiding local minima, I started every model
training of ModelNet40 with random restarts on a
small batch of 500 samples when training accuracy
doesn’t go above a threshold of .4. Once warmed up
the network switches over to a batch size of 128/256
for 50 Epochs or early stop with decreasing learning
rate.
(see appendix: ​Grid Search ModelNet40​)

5 Results

5.1 Evaluation / Validation

Performance

ModelNet10 ModelNet40
score 2*stderr score 2*stderr

Accuracy 93.08% 1.18% 82.73% 2.12%
 Rotated 90 31.31% 1.68% 41.09% 4.27%
MAP 88.44% 4.15% 70.10% 2.22%
 ​Rotated 90 35.10% 3.75% 30.49% 2.24%

Scrutinizing Discriminative Properties

From the precision recall plots and the confusion
matrix the least performant class “night stand” gets
mixed up with “dresser” pretty frequently (20% of
the time). Comparing dimensional
perturbations(next page) for a true positive “night
stand” with low confidence and a false negative
“night stand” the dimensional perturbations should
be similar(next page).

If there is discriminative power then the dimensional
perturbations will not all be the same.
If there is low discriminative power, then more of
the dimensional perturbations will be the same.

 Low Discriminative Power

True Pos False Neg

 ​1 2 3 1 2 3

(for full size see appendix: ​Dresser vs Nightstand​)

Conversely, when there is high discriminative power
we should see dimensional perturbations that are
more obviously different between the two objects.
(when the model is right and it was confident)

Column 2 is simply the activation map for that
class. You’ll notice these are exactly the same for
the Low Discriminative Power. Notice for the High
Discriminative Power, you’ll see that they’re
different.

 High Discriminative Power

True Positive True Negative

 (dresser positive)
 ​ 1 2 3 1 2 3

(for full size see appendix: ​Night Stand True Positive
and True Negative…​)

Columns 1 and 3 describe how the activations
change along that capsule dimension. Between the
classes you’ll notice that these are significantly
different from one another.

Rotational Invariance Not Achieved

ModelNet10 PR AUC

ModelNet10 PR AUC Rotated

These two pairs of charts show that we clearly did
not achieve rotation invariance for ModelNet10.

Perhaps more easily seen with a plot of the
distributions of average precisions.

Not Rotated Rotated

ModelNet40 PR AUC
For ModelNet40 Rotational Invariance will be more
easily seen by looking at differences in confusion
matrices

Not Rotated

Rotated

For rotated data, there are quite a few dark colored
squares along the diagonal, signifying successful
classification in spite of rotation. Taking a closer
look at the top ten performing classes PR AUC
curves below

